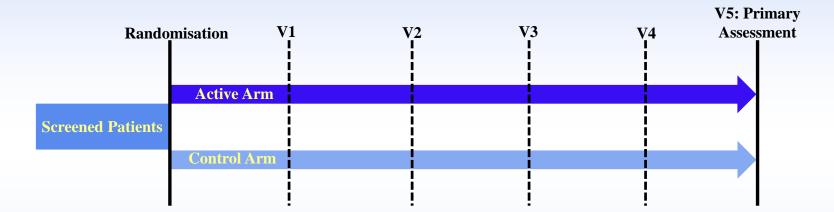
Concept for evaluation of remote endpoint assessment by integration of an orthogonal crossover equivalence substudy within longitudinal parallel trial designs

James Bell – Elderbrook Solutions GmbH

13rd September 2021

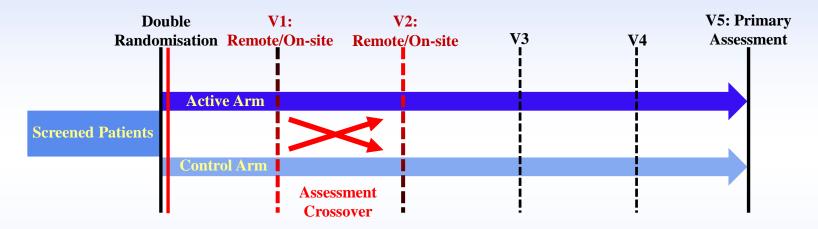
Introduction

- COVID-19 has caused much trial conduct disruption
 - Not always possible to get patients to sites
- Remote endpoint assessment was a possible *ad hoc* solution
- But is it equivalent to in-person assessment?
 - Particularly pertinent for Patient Reported Outcomes (PROs) and rated assessments
- Decentralized trials targeting same endpoints as 'standard' trials face similar issues
 - Need evidence that systematic remote endpoint collection is equivalent
- This talk proposes a design to demonstrate equivalence within existing trial envelope


Remote Assessment Equivalence Why Different?

- Endpoints often only validated under specific administration setting
 - Have to show remote assessment is equivalent
- Remote assessment may be different because of:
 - Different questionnaire administration (e.g. online vs paper, oral vs written)
 - Different interview conditions (in-person vs video vs phone)
 - Well-known differences in inter-personal interactions depending on media
 - Change in ease of assessing oral and visual clues
 - Different setting (home vs on-site)

Setting


- **PRO or assessor-based outcomes,** continuous / discrete longitudinal measurements
 - E.g. KCCQ (heart failure), ZAN-BPD (borderline personality disorder)
- Main setting of interest:
 - Ph II trial ahead of fully decentralised Phase III trial(s) targeting 'on-site estimand'
 - Want to demonstrate endpoint equivalence in advance
 - Validates remote assessment and increases acceptance for future phase III
- Also consider a secondary setting:
 - Phase III trials with mixture of on-site and remote endpoint collection
 - Want to demonstrate equivalence/interchangeability, or adjust if not
 - Have to be wary of outcome affecting method of assessment

Remote Assessment Equivalence Standard Design

- Standard 5 on-site visits parallel, randomised, double-blind, longitudinal design
- Continuous/discrete measurements at each
- Primary endpoint is at final visit
- MMRM (or similar) analysis
 - V1-4 measurements used primarily to address missing data at V5
 - Inefficient use of data

Remote Assessment Equivalence Proposed Design

- Still 5 visits parallel, randomised, double-blind, longitudinal design
- Patients additionally randomised to orthogonal 2x2 crossover design of assessment type:
 - One remote visit per patient, which one determined by second randomisation
 - E.g. patients randomised to remote assessment at either visit 1 or visit 2
 - Use of early & adjacent visits preferable
- Later visits (incl. primary assessment) unaffected

- Analysis by MMRM with time-dependent covariate (TDC) for assessment in model
 - Double-randomisation avoids standard problem of TDC correlation with trt

```
PROC MIXED DATA=input;
CLASS subjid visit remote trt;
MODEL result = trt*visit remote baseline*visit/ S DDFM = kr;
REPEATED visit / TYPE = UN SUBJECT= subjid R;
LSMEANS trt*visit /diffs;
LSMEANS remote /diffs;
RUN;
```

- Standard 2x2 crossover model for *remote* on top of standard MMRM for *trt*visit*
 - Provides analysis of both efficacy and remote assessment
 - *remote* interactions with *trt* or *visit* could be considered for sensitivity analysis (only)
 - Assessment is orthogonal, and blinded, to treatment
 - Assessment should be independent of visit, transferable to other visits
- Test equivalence using standard margin-based approaches

- No additional trial required to compare assessment types
 - Fast, seamless and extremely efficient
- **Precise**: Larger sample sizes than standard crossover equivalence trial
- Randomised crossover allows intra-patient comparisons, distinguishes from *visit* and *trt* effects
 - Carry-over effects very unlikely as assessment is not a 'treatment'
- Equivalence conditions in 'efficacy' setting; more relevant, less risk of assessor bias
- Negligible impact on primary outcome
 - Does not affect primary assessment visit
 - Affected visits used for missing data handling; still able to with effect adjustment
- Same approach useful in phase III to correct for mixed assessment practices
 - Randomised remote assessment removes/reduces bias from outcome-assessment correlations

Limitations

- Design not yet been tested in trial
- Some additional trial complexity
 - Additional IRT randomisation
- Assumes constant, additive effect for assessment effect
 - Multiplicative effects, heteroscedastic effects etc not covered
 - However... in phase II post-hoc assessments still possible if important deviation
 - Also no different than in any other equivalence setting
- May have impact on estimation at visits directly involved, but...
 - Minimal if remote assessment effect is constant & additive
 - Assessment method is independent of treatment
- Assessment type must be adhered to rigorously to avoid introduction of bias

Conclusions

- Remote endpoint assessment may be different to in-person assessment
 - Problem for relevance of decentralized trials
- An orthogonal randomised crossover equivalence design may be seamlessly integrated into standard longitudinal efficacy trials
 - Makes use of inefficiencies in standard longitudinal designs
- Analysis via MMRM with time-dependent covariate in model
 - Randomisation ensures independence of TDC from treatment
- High precision, highly relevant and avoids need for additional trial
- Trial design still needs to be tested in real world

Remote Assessment Equivalence Acknowledgements

- Acknowledgements to Boehringer Ingelheim for the ongoing collaboration
 - In particular, thank you to Jan Wruck for discussions on this topic